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Abstract— We present an algorithm for synthesizing dis-
tributed control policies for networks of mobile robots such that
they gather the maximum amount of information about some
a priori unknown feature of the environment, e.g. hydration
levels of crops or a lost person adrift at sea. Natural motion
and communication constraints such as “Avoid obstacles and
periodically communicate with all other agents”, are formulated
as temporal logic formulae, a richer set of constraints than
has been previously considered for this application. Mission
constraints are distributed automatically among sub-groups of
the agents. Each sub-group independently executes a receding
horizon planner that locally optimizes information gathering
and is guaranteed to satisfy the assigned mission specification.
This approach allows the agents to disperse beyond inter-agent
communication ranges while ensuring global team constraints
are met. We evaluate our novel paradigm via simulation.

I. INTRODUCTION

We consider a group of robots that are tasked with
conducting a mission while gathering information about
a large environment. For example, our method could be
employed by a group of robots autonomously tending to
an agricultural field. The robots must irrigate and monitor
crops (the “mission”), while simultaneously searching for
and reacting to pest infestation (the “information gathering”).
In order to complete this mission, the agents have to satisfy
certain motion constraints such as “Always avoid obstacles”
and “Visit a centralized station to upload gathered data.”
Constraints on the mission might require agents to cooperate
or perform tasks in a certain order, e.g. harvest grain before
depositing grain at a silo. Additionally, the agents face the
dual constraints of spreading out to explore the environment
while also communicating effectively with each other to
share gathered information and ensure cooperative tasks are
fulfilled. The motion and communication constraints can
naturally be described by a temporal logic (TL) formula.
TL constraints combine Boolean and temporal operators
to capture rich and complex specifications such as “Visit
regions A and B in any order before visiting region C while
always avoiding region D”.

We use tools from distributed formal methods to distribute
the TL formula among sub-teams of the agents such that
if each sub-team satisfies its individual formula, the global
constraints are satisfied. Once a sub-team has been assigned

K. Leahy is with the Department of Mechanical Engineering; A. Jones
is with the Division of Systems Engineering; and M. Schwager and C.
Belta are with the Division of Systems Engineering and the Department of
Mechanical Engineering at Boston University, Boston, MA 02215. Email:
{kjleahy,austinmj,schwager,cbelta}@bu.edu

This work was partially supported by ONR MURI N00014-09-1051, ONR
N00014-12-1-1000, NSF NRI-1426907, and NSF CNS-1035588.

an individual mission, it executes a computationally effi-
cient receding horizon planner that locally maximizes the
amount of information gained and is guaranteed to satisfy
the individual mission. An implementation of our procedure
is applied to a surveillance case study. Results from Monte
Carlo simulations demonstrate that our approach outperforms
a random walk constrained to satisfy the given specification.

Maximally gathering information in a distributed man-
ner is an example of a decentralized partially observable
markov decision process (DEC-POMDP), whose optimal
solution has been proven to be NEXP-complete (and there-
fore infeasible to calculate) in the worse case [1]. Common
methods used in this domain include one-step-look-ahead
[2], receding horizon [3], [4], and off-line planning [5],
[6]. Recent work has also included sampling trajectories
[7] and methods using rapidly-exploring random trees and
graphs [8]. Our work incorporates TL constraints into the
path planning problem. These constraints permit richer,
more realistic constraints on the motion of the agents than
have previously been addressed for multi-agent systems.
The receding horizon algorithm used for local information
gathering is based on the single agent method proposed in
[9], which maximizes information gathered by a single agent
subject to TL constraints.

In [10], the authors provided a method for distributing
a global task given as a regular expression to tasks for
individual robots using methods from concurrency theory
[11] and distributed formal methods [12], [13]. In that work,
agents are given a pre-computed path to follow through the
environment, and may be required to wait to communicate
with other agents before completing their task. The authors
provide a broad framework in which sub-teams of agents can
act independently to ensure that global, cooperative behav-
iors are produced. In this paper, we extend this framework to
include more typical—and more restrictive—communication
constraints based on agents’ distance from each other in
the environment. Our method also allows the agents to act
according to reactive control policies rather than follow
pre-specified paths, giving the agents a greater degree of
flexibility in conducting their mission. Further, we show how
to distribute specifications among sub-teams of agents rather
than among individual agents.

II. PRELIMINARIES

For a set Σ, we denote the cardinality and power set as |Σ|
and 2Σ, respectively. Σ∗ denotes the set of all finite words
that can be constructed from Σ. For two sets, A and B, A×B
indicates their Cartesian product, and An = A× . . .×A. For
a collection of sets {Σi}i∈I where I is an index set, we use



∏
i∈I Σi to denote the Cartesian product of all the sets in

the collection. We denote the empty string with ε.

A. Discrete Models

A deterministic transition system (TS) is a tuple TS =(
Q, q0, Act, T rans,AP, |=

)
, where Q is a set of states, q0 ∈

Q is the initial state, Act is a set of actions, Trans ⊆ Q×
Act × Q is a deterministic transition relation, AP is a set
of atomic propositions, and |=⊆ Q × 2AP is a satisfaction
relation. We define APq = { p ∈ AP | (q, p) ∈|=} as the set
of atomic propositions satisfied at state q. A finite run of a
TS is a sequence of states q0q1 . . . ∈ Q∗ such that ∃ai ∈ Act
such that

(
qi, ai, qi+1

)
∈ Trans ∀i = 0, 1, . . .. An output

trace of a run is a word w = w0w1 . . . where wi = APqi .
A discrete time Markov Chain (MC) is a tuple MC =(
S, s0, P

)
, with a set of states S, an initial state s0, and a

probabilistic transition relation P : S × S → [0, 1] such that
the probability of transitioning from state s to s′ is P (s, s′).

A discrete time Markov Decision Process (MDP) is a tuple
MDP =

(
S, s0, P,Act

)
, where S and s0 are defined as for

an MC, Act is a set of actions, and P : S×Act×S → [0, 1]
is a probabilistic transition relation with the probability of
transitioning from state s to state s′ under action a given
by P (s, a, s′). The set of actions a available at state s is
Act(s) ⊆ Act such that ∃s′ ∈ S with P (s, a, s′) > 0. A
sequence of states s0s1 . . . sl with P

(
si, a, si+1

)
> 0 for

a ∈ Act
(
si
)
∀i = 0, . . . , l − 1 is called a sample path.

B. Automata

In this work, we consider missions that can be specified
using syntactically co-safe Linear Temporal Logic (scLTL)
[14]. Given a set of atomic propositions AP , an scLTL
formula is defined inductively as:

φ = p|¬p|φ1 ∨ φ2|φ1 ∧ φ2|φ1Uφ2| © φ1|♦φ1 , (1)

where p ∈ AP , and φ1 and φ2 are scLTL formulae, ¬, ∨,
and ∧ are Boolean negation, conjunction and disjunction,
respectively, and U , ©, and ♦ are the temporal operators
until, next, and eventually. The satisfaction of an scLTL
formula can be checked in finite time, and all linear temporal
logic (LTL) formulae that can be checked in finite time can
be expressed as an scLTL formula. We denote the set of all
words that satisfy φ as the language of φ, denoted L(φ) [14].

A finite state automaton (FSA) is a tuple A =(
X,Π, x0, F,→A

)
, where X is a set of states, Π is an

input alphabet, x0 ∈ X is an initial state, F ⊆ X is a
set of final (accepting) states, and →A⊆ X × Π × X is a
deterministic transition relation. A accepts a word w ∈ Π∗

if the last symbol in w is in the accepting set F . The set
of all words accepted by an automaton A is called the
language of the automaton and is denoted by L(A). Given
an automaton A, we use ¬A to denote the automaton such
that L(¬A) = Σ∗ \ L(A). ¬A can be constructed from A
by replacing all accepting states with non-accepting states
and all non-accepting states with accepting states. Given
an scLTL formula φ, there exist off-the-shelf tools such as

scheck [15] which can construct an automaton Aφ with input
language 2AP such that L(φ) = L(Aφ).

The synchronous product of a set of automata Ai =(
Xi,Πi, x

0
i , Fi,→Ai

)
for i in index set I is the automaton

Ap = ‖i∈IAi = (Xp,Πp, xp, Fp,→Ap) where Xp =∏
i∈I Xi, Πp =

⋃
i∈I Πi, xp = (x0

i )i∈I , and Fp =
∏
i∈I Fi.

The transition relation →Ap⊆ Xp × Πp × Xp is defined
such that ((qi)i∈I , π, (q

′
i)i∈I) ∈→Ap⇔ ∀j ∈ I such that

π ∈ Πj , (qi, π, q
′
i) ∈→Ai and ∀k such that π 6∈ Πk, qk = q′k.

A product automaton between a transition
system TS =

(
Q, q0, Act, T rans,AP, |=

)
and

an FSA Aφ =
(
X, 2AP , x0, F,→A

)
is an FSA

P = TS × Aφ =
(
XP , 2

AP , χ0, Act, FP ,→P
)
.

XP ⊆ Q × X is the state space of P , χ0 = (q0, σ0)
is the initial state, and FP ⊆ Q × F is the set of
accepting states. The transition relation is defined as →P=
{(q, x) , p, (q′, x′) | (q, p, q′) ∈ Trans, (x,APq, x′) ∈→A}.
The state of P at time k is (qk, xk), which we denote as
χk for brevity. If χ0:` is an accepting run on P , then the
associated run q0:` satisfies φ.

For a set Σ, we call the set of subsets {Σi ⊆ Σ, i ∈ I},
a distribution1 ∆ of Σ if ∪i∈IΣi = Σ, where I is an index
set. For a word ω ∈ Σ∗ and a subset Σi ⊆ Σ, the projection
of ω onto Σi, written ω �Σi , is obtained by removing all
symbols in ω that are not in Σi. For a language L ⊆ Σ∗ and
a subset Σi ⊆ Σ, the projection of L onto Σi, L �Σi is the
set {ω �Σi |ω ∈ L}.

Given a distribution {Σi}i∈I of Σ and ω, ω′ ∈ Σ∗, ω′

is trace-equivalent to ω (ω′ ∼ ω), iff ω �Σi= ω′ �Σi for
i ∈ I . The trace-equivalence class of ω for the distribution
is [ω] = {ω′ ∈ Σ∗|ω′ �Σi= ω �Σi ∀i ∈ I}. A trace-
closed language over the distribution is a language L such
that [ω] ⊆ L, ∀ω ∈ L.

III. PROBLEM FORMULATION

A. Motion and Service Model

We consider a team of agents with heterogeneous motion
capabilities operating in a shared environment. The environ-
ment is modeled as a graph E = (V,→E), with a set of states
V and a set of edges →E⊆ V × V . Such a discrete graph
may be constructed as the quotient graph of a partitioned
continuous environment. We define a labeling function, L :
V → 2AP , which maps regions in the environment to a set
of atomic propositions which may be satisfied at the regions.

A team of m agents is indexed by the set I . The motion
of a single robot i in E is modeled by a TS Roboti =(
Qi, q

0
i , Acti, T ransi,Σi, |=i

)
, where Qi ⊆ V are the set

of states that Roboti can occupy, q0
i ∈ Qi is the initial

state, Acti is the set of actions the robots can take, Σi ⊆
AP∪{ε}are the robot’s service capabilities, and |=i⊆ Qi×Σi
captures how atomic propositions may be satisfied by agent
i at the states, where (q, ε) ∈|=i for all q ∈ Qi and
(q, σ) ∈|=i, σ ∈ Σi, if and only if σ ∈ L (q). The model uses

1The use of the term distribution should not be confused with the notion
of a probability distribution. We use this term to remain consistent with the
related literature.



a discrete clock k which is initialized to zero and increments
by 1 every time Roboti takes an action. The state of Roboti
at time k is qki , and the action executed at time k is aki . We
write ak to represent the vector of actions taken by the team
at time k. Similarly, the state of the team at time k is written
as qk. Two or more agents may occupy the same state, and
the clocks of each agent in the team are assumed to initialize
and evolve in time synchronously.

Each run ri = q0
i q

1
i . . . of Roboti generates a correspond-

ing output word ωi = ω0
i ω

1
i . . .. Each symbol in ωi comes

from the alphabet of Roboti such that
(
qli, ω

k
i

)
∈|=i. For the

team as a whole, the output word ωteam = ω0
teamω

1
team . . .

is generated such that ωkteam =
⋃m
i=1 ω

k
i is the union of all

propositions serviced at time k.
A distribution ∆ captures the service capabilities of a team

of agents. The capabilities of agent i are given by Σi ∈ ∆.
For a request σ ∈ Σi, agent i is said to “own” the request,
and that agent is the only agent that can service that request.
If more than one agent owns the request, that is, if σ appears
in more than one set Σi, it must be serviced by all of the
agents that own it simultaneously in order to be satisfied.

Example 1. Three agents must perform a surveillance mis-
sion in the environment pictured in Fig. 2. This environment
is modeled as a graph with 64 nodes, which are inherited by
the transition systems {Roboti}i=1,2,3. Agents must survey
regions of interest labeled πi, i = 1, . . . , 4 while avoiding
obstacles and tracking a target whose position is a priori
unknown. Each agent begins in a region labeled πH and has
motion primitives {N,S,E,W}, corresponding to each of
the four directions on the grid. Obstacles in the environment
are labeled πO. The distribution ∆ of agent capabilities is
Σ1 = {π1, π4}, Σ2 = {π2, π3}, and Σ3 = {π2, π3}.

B. Communication Model

We assume that communication among agents is based
on proximity to other agents. A parameter, CommDist,
captures the maximum distance over which two agents may
communicate directly. For robots communicating wirelessly,
the threshold represents the maximum distance over which
wireless communication has a high probability of success.
For two agents i and l, QComm ⊆ Qi × Ql is the set of
states where communication is possible. That is, QComm =
{(q1, q2) |d(q1, q2) ≤ CommDist}, where d(q1, q2) is the
distance between q1 and q2 on the graph of the environment
E . The agents therefore form a mobile ad hoc network, and
we assume the use of a protocol for efficient communication
over such a network, given changing topology [16].

C. Sensing Model

The team of robots is tasked with estimating a feature (or
target) in the environment that evolves stochastically over
timethat is modeled as a Markov Chain Targ =

(
S, s0, P

)
which evolves synchronously with Roboti. The state of Targ
at time k is denoted as sk. The initial state of Targ, s0, is a
priori unknown. When Roboti moves to state qki at time k it
measures sk using noisy sensors, resulting in measurement
yki ∈ RY . The vector of the measurements of all agents at

time k is written yk. Each measurement is a realization of a
discrete random variable, Y ki . The distribution of Y ki depends
on the true underlying state of the feature sk, the position
of the robot taking measurement qki , and the statistics of the
sensor. We capture this with measurement likelihood function

h (y, s, q) = Pr[ measurement is y|Targ in state s,Robot in state q].

(2)
In this work, we assume that each robot has identical

sensing capabilities, i.e. the measurement likelihood function
for each agent is identical. Each robot maintains an individual
estimate of sk given its own measurements bki (s) = Pr[sk =
s|y1:k

i , q0:k
i ]. Each belief state bi is initialized as an identical

pmf b0 which reflects any initial information about the
state of s0. For a sub-team of agents who are able to
communicate, we denote the belief of the jth sub-team,
which is identical among the agents in the team, as bkj . As
agents take measurements, they share those measurements
with the team, and the team belief is updated as

bkj (s) = ηPr
(
ykj |s, qkj

) ∑
s′∈S

P (s′, s) bk−1
j (s′) (3)

where η is the appropriate normalization factor, ykj is the
collection of measurements taken by the sub-team, and qkj
describes the positions of all of the agents in the sub-
teams. We assume that the measurements of the agents are
conditionally independent. The conditional distribution of the
measurements ykj is

Pr
(
yk1 , . . . y

k
m

∣∣ s, qk1 , . . . qkm) =
∏
i∈I

h
(
yki , s, q

k
i

)
. (4)

Each sub-team belief bkj evolves according to an MDP
Estj =

(
B, b0, Pest, Qj

)
. B is the set of all possible beliefs

that can be outputs of the Bayes filter given initial belief b0.
Pest is a probabilistic transition relation such that if b′j is
the result of applying (3) after measuring ykj in states qkj ,
then Pest

(
bj , q

k
j , b

′
j

)
is the total probability of observing

ykj , i.e.

Pest
(
bj , q

k
j , b

′
j

)
=
∑
s1,s2∈S

∏
i∈I h

(
yki , s, q

k
i

)
P (s1, s2) bj (s1) . (5)

Example 2. In our example, each agent may detect the
presence of the target, e.g. a vehicle of interest in an
urban environment, in its neighborhood, Ni. In other words,
each agent can detect the target in its own location on
the transition system or in adjacent states on the transition
system. Detection is binary, with a 1 indicating that the target
is detected in Ni and 0 otherwise.

D. Problem Definition

Here we formulate the problem of multi-agent information
gathering under temporal logic constraints. We assume that
the team of agents must satisfy its mission constraints φ
before a deadline T . This deadline can be used to enforce
energy constraints (limit the number of actions the robots
take) or timeliness constraints (make sure information is
shared in a timely manner). Our goal in this problem is to
select the set of actions for the team a0:T−1 that minimizes



the uncertainty in the estimate of the state of Targ while
satisfying the mission constraints in time. In other words,

Problem III.1 (scLTL-constrained information gathering).
Given a team of m agents each with model, a feature Targ,
an scLTL formula φ over AP, and a deadline T , solve

min
a0:T−1

EY 0:T

[
H
(
bT |b0,Y 0:T , q0:T

)]
subject to φ is satisfied,

(6)

where H (·) is Shannon entropy.

Example 3. In our example, the 3 agents are required to
satisfy the following mission specification

φ = ♦π1 ∧ ♦π2 ∧ ♦π3 ∧ ♦π4 ∧ (¬π3Uπ2) . (7)

Specification φ is interpreted as “eventually service regions
1 through 4, and service region 2 before servicing region 3.”
The deadline imposed on satisfaction is T = 20.

IV. SOLUTION

The solution to Problem III.1 is summarized in Alg. 1.
First, the team of agents splits into sub-teams according to
their capabilities (IV-A). Next, the specification is checked
for distributability among the sub-teams (IV-B). The speci-
fication is distributable if it may be separated into multiple
local specifications such that if each sub-team satisfies its
local specification, the global specification is satisfied. The
sub-teams then independently execute a receding horizon
algorithm to gather information and satisfy their local spec-
ifications. Finally, they return to a starting region and share
their measurements (IV-C). Distributing the specification
may be implemented offline pre-deployment, while sub-
teams perform the receding horizon algorithm online during
mission execution.

Algorithm 1 Solution Outline
Input:An scLTL formula φ over Σ, a distribution ∆ =
{Σi ⊆ Σ, i ∈ I} of Σ, a set of TS, Roboti, i ∈ I , a deadline
T , a lookahead horizon h, and an action horizon n

1: Build sub-teams C, distribution ∆C, and {TSci}i∈IC
2: wi∀i ∈ IC = GETLOCALWORDS (φ,∆C, TSci ∀i ∈ IC)
3: for ci ∈ C do
4: Construct automata Aloci accepting wi
5: Construct product Pi
6: RECEDINGHORIZONDP(Pi, χ0, b0, h, n, T )
7: Share measurements with other sub-teams
8: Calculate bT

A. Sub-teams

As noted in Section III-A, if a request σ appears in
the capabilities of more than one agent, according to the
semantics of scLTL, those agents who own the request must
service it simultaneously in order for it to be satisfied. There-
fore, we break up the team of m agents into subsets called
sub-teams according to the distribution of their capabilities.
These sub-teams are the smallest groups of agents who must
cooperate to satisfy the TL specification. These sub-teams

may operate independently to satisfy a portion of the mission
specification, as explained in sections IV-B & IV-C.

The specification alphabet, denoted Σφ, is the set of all
atomic proposition appearing in φ. The team is split into a
set of sub-teams C = {c1, . . . , cn}, where each sub-team
ci is made up of one or more agents from I and n ≤ m.
An agent may not be in more than one sub-team. The sub-
team alphabet is given by Σci =

⋃
j∈ci Σj . In other words,

the sub-team alphabet is the union of the capabilities of the
members of the sub-team. Membership in sub-teams is such
that given two sub-teams, ci and cj ,

Σci �Σφ ∩Σcj �Σφ= ∅, ∀ci, cj ∈ C , (8)

i.e., the capabilities of agents in any two sub-teams are
distinct, while the capabilities of agents in the same sub-
team overlap (although not necessarily with all agents in the
sub-team). We may also define a distribution ∆C with respect
to the sub-teams where

⋃
ci∈C Σci = Σφ. This distribution

captures the capabilities of the sub-teams, by combining the
capabilities of each of the agents in the sub-team. The set of
sub-teams C is indexed by a set denoted IC.

Example 4. Given the distribution Σ1 = {π1, π4}, Σ2 =
{π2, π3}, and Σ3 = {π2, π3}, we construct the set C =
{c1, c2}, where c1 contains agent 1, and c2 contains agents
2 and 3. As such, Σc1 = {π1, π4} and Σc2 = {π2, π3},
since agent 1 has capabilities π1 and π4 and agents 2 and 3
have capabilities π2 and π3, and each of these propositions
appears in φ as given by Equation 7.

For each sub-team ci ∈ C, we construct a product tran-
sition system TSci =

(
Qci , q

0
ci , Actci , T ransci ,Σci , |=ci

)
,

consisting of |ci| copies of Robot, where Qci ⊆
∏
i∈ci Qi,

q0
ci = (q0

i )i∈ci , Σci =
⋃|ci|
i=1 Σi, and |=ci=

⋃|ci|
i=1 |=i.

The set of transitions at state qkci is defined as Transci ⊆
Qci × Actci × Qci such that ∀qki ∈ qkci , ∃q

′
i, ai such that(

qki , ai, q
′
i

)
∈ Transi and ∃j ∈ ci, j 6= i such that (qj , qi) ∈

QComm. Thus, the transition system includes only actions
that do not disconnect the group communication graph.

B. Task Distribution

This section deals with determining if the mission specifi-
cation may be distributed among the sub-teams as created
in IV-A. If distribution is possible, we present a method
for finding a local task for each sub-team which guarantees
satisfaction of the specification. This process is summarized
in Algorithm 2. Algorithm 2 is inspired by [10], with
modifications to permit a more restrictive communication
model as well as accommodating online motion planning.
Correctness of the algorithm is based on the same concepts
as [10], and as such details and proofs are omitted here.

First, the specification φ is converted to an FSA Aφsuch
that L(Aφ) = L(φ). Sub-team-specific FSAs, Ai ∀i ∈ IC,
are created by projecting Aφ onto the capabilities of each
sub-team, such that L(Ai) = L(Aφ) �Σci

. Next, we add the
empty string, ε and self transitions to Ai to create Âi. For
each sub-team, a product FSA Pi is constructed from each
Âi and its corresponding product transition system, TSci .



The product FSAs capture the behavior of each sub-team
and its ability to satisfy requests from φ while remaining in
communication.

Once the sub-team capabilities are captured in their cor-
responding product FSAs Pi, they are converted to minimal,
deterministic representations Aεi using the subset construc-
tion algorithm outlined in [17]. This means that Aεi captures
all possible words that the behavior of sub-team i can
produce. Taking the product of these FSAs, ‖i∈ICAεi , captures
the possible interleaving behavior of the sub-teams.

If the language of the original FSA, Aφ, is trace closed
and the language of the product of Aφ with the product
of all of the Aεi , ‖i∈ICAεi is non-empty, a satisfying word
can be found using backwards reachability [18]. This word
is projected onto the sub-teams’ capabilities to find local
words for each sub-team. These words are guaranteed to
satisfy φ when executed by the sub-teams. The complex-
ity of checking for trace-closedness of Aφ is bounded by
O (|X| · |Σ|), construction of Aεi by O (|Transci | · |Q|) +
O (|Transci |log|Transci |), and construction of ‖i ∈ ICAεi
by O

((∏
i∈IC |Transci |

)2 · |Σ|). Details on the proof of
correctness and complexity can be found in [10].

Algorithm 2 Find local words from a global specification

1: function GETLOCALWORDS(φ,∆C,TSci ∀i ∈ IC)
2: Construct Aφ and {Ai = Aφ �Σci

, i ∈ IC}
3: Construct Âi from Ai∀i ∈ IC by adding ε
4: Construct product FSA Pi = Âi × TSci ∀i ∈ IC
5: Construct Aεi via subset construction algorithm
6: Construct ‖i∈ICAεi and verify L(‖i∈ICAεi) 6= ∅
7: if L(Aφ) is trace closed then
8: AG = Aφ × ‖i∈ICAεi
9: else

10: AG = ¬ (‖i∈IC ((‖i∈ICAεi × (¬Aφ)) �Σi)) ×
‖i∈ICAεi

11: if L(AG) = ∅ then
12: return No solution
13: else
14: Find satisfying word wg ∈ L(AG)
15: Find local words wi = wg �Σci

, ∀i ∈ IC
16: return wi ∀i ∈ IC

C. Dynamic Programming

Once a local word wi has been found for each sub-team
ci ∈ C, the agents are deployed in the environment. At this
point, each sub-team separately executes a receding horizon
planner that locally maximizes information gathering while
guaranteeing the satisfaction for their assigned local word
(if the local word is satisfiable). Two agents may occupy the
same region without collision and members of each sub-team
share observations in real-time during execution.

To initialize the planner, each sub-team constructs an
automaton Aloci which accepts the local word wi as computed
in Section IV-B. We add the constraint that agents must
return to the starting region (πH ), as well as obstacle

avoidance constraints. In general, the constraint on obstacle
avoidance does not distribute across the entire team, but
including this constraint for each sub-team after distribut-
ing the formula ensures that all agents successfully avoid
obstacles. Returning to the starting region permits sub-teams
to share measurements after all planners have completed.
Further, returning to a starting region allows for the team
to redistribute itself according to a new specification. That
is, the specifications considered in this paper are “stepping-
stones” to missions over long horizons in which agents
periodically meet to share measurements. A transition is
added from the set of final states in Aloci to a new final
state, so that the mission terminates only if the agents have
returned to the starting region.Next, a product automaton Pi
is constructed from Aloci and TSci .

The receding horizon algorithm (Alg. 3) uses Pi, the initial
belief b0, a lookahead horizon h, an action horizon n, and a
deadline T to plan the motion of each sub-team on-line. The
algorithm first finds the set of states that are reachable in the
time left before the deadline (line 4). This produces h sets
of states autStates[i] such that each state χ ∈ autStates[i] is
reachable in i steps from the current state of the automaton
and can reach an accepting state within the remaining budget
T − k − i. Next, this set of states is used to construct a
finite MDP in the belief space.This algorithm combines the
motion and budget constraints and applies the Bayes filter
for each possible sequence of h actions and h observations
that can be realized from the current state. Finally, a policy
µ is generated using Bellman iteration to minimize expected
entropy over the horizon h (line 6). This policy is followed
for the duration of the action horizon, n, at which point the
planning process is repeated. The algorithm terminates when
a final state is reached. The time complexity of this algorithm
is O

(
|Actci |h|RY |h|ci||S|dTn e

)
. Details of this algorithm,

including a proof that it is guaranteed to satisfy the given
scLTL specification, are available in [9].

Algorithm 3 Receding horizon DP algorithm

1: function RECEDINGHORIZONDP(Pi,χ0,b0,h,n,T )
2: χ = χ0; b = b0; k = 0
3: while χ /∈ FPi do
4: autStates = REACHABLE (Pi, χ, h, T − k)
5: MDP = BUILDMDP (Pi, χ, b, autStates)
6: µ = BELLMANITERATION (MDP)
7: if k ≥ T − h then
8: n = T − k
9: for i = 1 to n do

10: (χ, b) = result from applying µ (i, (χ, b))
11: k ++

V. SIMULATION AND RESULTS

We simulated our running example on a PC with a 1.9
GHz processor and 8 GB of memory. We ran 100 simulations
each using our receding horizon algorithm implementation
and using a random walk on paths guaranteed to satisfy the
specification. For both the receding horizon and the random
walk simulations, the target was initialized randomly. The
total time to run 100 receding horizon simulations was 2057
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Fig. 1: Histogram of entropy results for 100 simulations for
(a) receding horizon and (b) random walk approaches.

(a) t = 9 (b) t = 12

(c) t = 13 (d) t = 14

(e) t = 20

Fig. 2: Sample run from t = 0 to t = 20. Pink circle is agent
1, blue circles are agents 2 and 3, and black circle is target.

seconds, or about 21 seconds per simulation. The product
automata for all agents were computed before running the
simulations. The product automaton for agent 1 had 320
nodes and 1008 edges and took 20 seconds to compute.
The product for agents 2 and 3 had 1800 nodes and 14,422
edges and required 3485 seconds to compute. Simulation
results are summarized in Fig. 1. Fig. 1a shows results for
the receding horizon approach, having average entropy of
2.71 bits. The random walk results are in Fig. 1b, with
average entropy of 3.17 bits. The difference in mean entropy
was statistically significant, with a Student’s t-test with 198
degrees of freedom yielding a p-value of 0.004 (t(198) =
−2.90, p = 0.004). Thus the receding horizon algorithm
shows better performance on accepting runs on the product
automaton than the random walk approach.

VI. CONCLUSION

The work presented in this paper expands on previous
work in single agent informative path planning under tempo-

ral logic constraints. We present a novel method for distribut-
ing tasks among groups of agents with a restrictive commu-
nication model and give a framework for incorporating these
methods into a single, flexible algorithm. While connectivity
is not necessarily maintained during the entire mission, our
formulation permits some global coordination by dividing the
team into sub-teams that act independently. We consider a
team of heterogeneous agents with homogeneous sensing,
but heterogeneous sensing capabilities easily fit into our
methodology. We plan to extend this work to a persistent
monitoring setting, in which team behavior can be optimized
over an infinite horizon. Other future areas for future work
are methods of data fusion without requiring sharing of
individual measurements and operation in unknown topology.
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