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Abstract— For some applications in team robotics, a wireless
electronic communication system is not ideal. We propose for
some of these tasks that it is more appropriate to communicate
through motion, that is by encoding symbols in locomotion and
decoding symbols using sensor data. We discuss some of the
challenges and requirements of such a system and derive for
the LTI case control policies used to enact trajectories that
optimize a joint expression of control energy and robustness to
observation noise.

I. INTRODUCTION

Complex interactions between and emergent patterns of
multiple agents can be achieved in the absence of any
communication [1], [2]. Richer behavior, collaboration and
more flexible control, however, can be achieved when direct
communication between agents is allowed. For example,
multiple agents tasked with efficiently finding targets in a
given environment would clearly benefit from sharing with
each other their best computed estimates of target positions.
Typically such inter-agent communication is accomplished
using some form of wireless electromagnetic transmission.
Communication over wireless networks, both centralized and
distributed, remains an active area of research and industrial
application [3] and reasonably robust implementations of
such communication systems are feasible for many robotic
team applications [4], [5]. While wireless networks can offer
high speed information transfer, as we discuss below, they
are not always the best choice.

Wireless communication systems transmit information
along frequency bands of the electromagnetic spectrum.
They are therefore not suitable for underwater scenarios.
Further, transmitted messages are subject to electromagnetic
noise from the environment from natural sources such as
solar phenomena [6]. Electromagnetic communication is also
subject to cross-talk, in which signals from other sources
bleed into the allotted communication channel. This problem
is certain to become more frequent given the increasing
prevalence of wireless systems [7]. Electromagnetic systems
are also vulnerable to adversarial jamming [8] and other
security risks [9]. It can be argued that any system operating
in such environments should have a backup communication
network that is robust to these error sources.

Perhaps more importantly, wireless communication sys-
tems require infrastructure. The physical mechanisms re-
quired to transmit/receive signals add both volume and
payload to the design. Transmitting wireless signals requires
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consumption of energy, a resource that is not abundant
for wireless systems, and the signal processing on received
signals requires computational resources. These resource
requirements are in direct conflict with the goal of developing
teams of small, agile robotic agents that can operate in the
field long-term [10], [11].

One method for inter-agent communication that does not
require the transmission of wireless electromagnetic signals
is motion-based communication (MBC). In such a paradigm,
an agent that needs to transmit information will enact a
trajectory. The transmitting agent’s observing neighbors then
measure its trajectory and decodes the desired message.
This takes advantage of the agents’ sensing and locomotion
systems without requiring additional physical apparatus in
order to communicate. A well-studied example of a MBC
system in nature is the bee waggle dance [12] in which bees
encode the direction and distance to a foraging target in the
parameters of the dance.

While the fundamental study of MBC from a control
point of view is still in its infancy, there is some prior
work on communication through relative motion [13]–[15]
and in communicating during shared activities such as dance
[16]. This last also defines and analyzes an energy-minimal
problem subject to particular separation constraints on the
communicated symbols (see also Sec. II). Other works
consider coupling information and continuous trajectories
but do not endeavor to design cooperative communication
systems. Results in symbolic control address the problem of
finding minimum size alphabets of control primitives capable
of steering several types of dynamical systems [17], but
do not address control energy or observation. Others have
studied decoding motions to determine a non-cooperative
agent’s intent [18] or to learn sequences of motion primitives
[19], but have not consider the design of optimally decodable
trajectories. There has also been work on the related problem
of motion camouflage, that is finding trajectories that keep a
system hidden from an observer [20].

In this work, we define and solve a minimum energy,
maximum distinguishability problem for a linear system
and connect it to the well-studied linear quadratic regulator
(LQR) problem. The remainder of this paper is organized
as follows. In the next section, we formulate and discuss
the general MBC problem and define a specific optimal
control problem that balances the amount of energy in the
applied controls against the distinguishability of the encoded
messages by the observer. In Sec. IV we restrict ourselves



to linear time-invariant systems and solve the corresponding
optimal control problem. We provide an example of our
results in Sec. V. Finally, in Sec. VI we conclude with a
discussion of the results and some future directions.

II. THE MBC DESIGN PROBLEM

While there are many ways to formulate the MBC prob-
lem, there are several common issues and challenges includ-
ing the following.
• Balance of tasks:

Most cooperative tasks require agents to move in the
mission space. If motion also encodes communication,
there must be a way of making information-bearing
motions distinct from informationless motions that are
required to fulfill the task specification. One can con-
sider decoupling task motions from communication mo-
tions either spatially (by reserving portions of the state
space for each) or temporally. One can also consider
superimposing a communication motion “on top” of a
task motion by introducing, for example, a dither pattern
on top of a translation.

• Scalability in number of agents:
If an agent can observe a large number of neighbor-
ing agents, it must be able to receive messages from
multiple neighbors at the same time and decode the
signals; this is a strain on both sensor and computational
resources. This is exacerbated by the fact that communi-
cating agents must maintain line-of-sight (with respect
to the sensors employed) and that agents may desire to
simultaneously transmit and receive information.

• Limited energy consumption:
Enacting a trajectory requires the consumption of energy
by the agent. As discussed, in Sec. I, one motivation
for MBC is its application on small, agile robotic
agents in which energy must be carefully managed.
The communication trajectories, then, should be as low-
energy as possible.

• Scalability in message complexity:
One of the most obvious restrictions of MBC is the
limited bandwidth. One should not expect, then, to de-
velop an MBC system which follows the same paradigm
as for wireless communication through electromagnetic
means. One appealing approach is to encode in the
trajectories of an MBC system a limited number of
possibly parameterized messages rather than a generic
structure from which arbitrary messages can be built;
such is the scheme in the bee waggle dance [12]. The
particular messages will likely need to be carefully
tailored for each situation.

• Balancing expressivity against distinguishability:
Expressivity can be generated either by having a rich
set of symbols, each conveying a different message,
or by allowing complex messages to be generated by
sequences of a small set of symbols. As discussed
in the previous point, the limited bandwidth of MBC
prevents the use of long sequences. The number of
distinct symbols is also limited, in this case by the fact

that the observer must be able to distinguish between
them in face of sensor resolution and noise.

In this work we set aside the challenges of task balancing
and scalability and focus on those of energy consumption and
distinguishability. In the next section, we define a problem
that captures these two issues and then focus it to the case
of linear systems in Sec. IV.

III. MBC AS AN OPTIMAL CONTROL PROBLEM

Consider a simple model with a single transmitting agent
T and a single observing agent O. T is a mobile agent whose
dynamics are given by the general nonlinear differential
equation

ẋ = f (x(t),u(t)), x(to) = xo, (1)

where x(t) ∈ Rn is the (kinematic) state of T , xo ∈ Rn is its
initial state of T , and u(t) ∈ Rm is the control input to T .
Let the kinematic state of O be given by a vector z(t) ∈Rn.
O can make observations y(t) ∈ Rp of the state of T where
the observation relationship is given by

y(t) = h(x(t),z(t)). (2)

Note that for the purposes of this work we ignore the
dynamics of the observing agent, though questions as to the
best control for the observer to measure a transmission are
both interesting and relevant.

Since we are ignoring issues related to combining commu-
nication with other tasks, in the sequel we will often suppress
the dependence on the initial condition and fix the initial time
to be to = 0. We also select a fixed communication interval
[0, t f ] and fixed final state x f . One natural choice is to set
the final state equal to the initial state; this would allow both
for message concatenation and also ensure that the system
can continue with whatever task it was performing prior to
beginning a transmission. We naturally assume that x f is
reachable from the initial condition.

We suppose that we have a finite alphabet of commu-
nication symbols, S = {s1,s2, . . . ,sq}. To each symbol we
wish to associate a unique trajectory xi and, by extension,
an observed signal yi. The MBC problem, then, is to select a
set of control inputs ui(·) : [0, t f ] 7→ Rm such that x(t f ) = x f
and that minimize the energy utilized by T while maximizing
the distinguishability (in a sense to be made precise in Sec.
III-B below) of the signals observed by O.

A. Cost of transmission

We assume that associated to each symbol si is a probabil-
ity pi that the symbol will be selected for transmission. One
component of our goal is to minimize the average value of
the energy of transmission in the following sense. Let Ji(t f )
be the total energy in the control signal ui(·). Define the
random variable J(t f ) as the energy in the control signal of
a randomly selected signal; J then takes on values in the set
{Ji(t f )}q

i=1. The expected value of the total energy in sending
a symbol is then given by

E[J(t f )] =
q

∑
i=1

piJi(t f ). (3)



Intuitively, a minimum energy assignment of controllers
would associate the lowest energy control with the most
probable symbol and, conversely the highest energy con-
troller to the least probable symbol.

B. Distinguishability of symbols

We define the observation distance dO between two signals
y1(·) and y2(·) as

dO(y1,y2; t f ) =
∫ t f

0
(y1(σ)− y2(σ))T M(y1(σ)− y2(σ))dσ

(4)

where T denotes transpose and M is a given symmetric,
positive definite matrix. The “total distinguishability” of a
set of symbols is denoted ∆(t f ) and defined by

∆(t f ) = ∑
i, j:i6= j

dO(yi,y j; t f ). (5)

Notice that contrary to the energy cost E[J(t f )], in the
definition of ∆(t f ) we do not weight the distance between
received signals by the frequencies of symbol selection. This
is done to ensure that the communication system is uniformly
robust.

Note also that we have chosen the L2 norm to measure the
distance between signals. While other norms can be selected,
the choice of the L2 norm provides a measure of robustness
since measurement errors can be filtered out over the entire
interval.

C. Optimal control problem

We can now bring together the cost functions of the control
energy and the distinguishability to arrive at the optimal
control problem capturing the MBC scenario.

min
ui

w1E[J(t f )]−w2∆(t f )

subject to
ẋi = f (xi(t),ui(t)),

xi(0) = xo, xi(t f ) = x f ,

yi(t) = h(xi(t),z(t)),

i = 1,2, . . . ,q.

(6)

where w1 and w2 are weights that emphasize the importance
of minimizing the control energy and of maximizing the
distinguishability, respectively.

We note that the work in [16] sets up a similar problem
but deals with the distinguishability objective by introducing
a minimum distance constraint of the form

min
j∈{1,2,...,q}

dO(yi,y j, t f )≥ δmin > 0 ∀i 6= j (7)

rather than using dO in the objective to optimize the separa-
tion of the observed signals. The two approaches are clearly
similar but we feel that the inclusion of the separation in
the objective is more flexible. Note that with constraint (7),
we expect the energy cost to increase monotonically with
the parameter δmin such that in the optimal case (7) will be
satisfied with equality. In contrast, our formulation rewards

increased distinguishability. Depending on the weights wi,
our approach may allow T to produce significantly more
distinguishable signals by expending slightly more energy
when compared to the approach in [16].

IV. MBC FOR LINEAR SYSTEMS

The general MBC problem defined in (6) is challenging
to solve. In this section we simplify the problem to the case
where T is a linear time-invariant (LTI) system and O has
LTI observations, that is

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t).
(8)

We assume that the pair (A,B) is controllable and that the
pair (A,C) is observable. Applying the variation of constants
of formula yields the solution

x(t) = eAtx0 +
∫ t

0
eA(t−σ)Bu(σ)dσ ,

y(t) =Cx(t) =CeAtx0 +C
∫ t

0
eA(t−σ)Bu(σ)dσ

(9)

Using this in (4) with M = In yields the observation
distance

dO(y1,y2, t f )=
∫ t f

0
(x1(σ)− x2(σ))T CTC (x1(σ)− x2(σ))dσ .

(10)
To complete the definition, we assume that the energy

function associated with each controller is quadratic in the
control and the state, that is

Ji(to, t f ) =
∫ t f

0
uT

i (σ)Rui(σ)+ xT
i (σ)Qxi(σ)dσ (11)

for given matrices R = RT > 0 and Q = QT ≥ 0. The MBC
problem (6) then becomes

min
ui

∫ t f

0

(
w1

q

∑
i=1

pi
(
uT

i (σ)Rui(σ)+ xT
i (σ)Qxi(σ)

)
−w2 ∑

i, j
(xi(σ)− x j(σ))T CTC (xi(σ)− x j(σ))

)
dσ

subject to
ẋi(t) = Axi(t)+Bui(t),

xi(0) = xo, xi(t f ) = x f ,

i = 1,2, . . . ,q j = 1,2, . . . ,q.
(12)

This clearly has the form of the linear quadratic regulator
(LQR) problem. To make this explicit, first define the stacked
vectors ũ(t), x̃(t), x̃0, and x̃ f as

ũ(t) =
[
uT

1 (t) uT
2 (t) · · · uT

q (t)
]T

,

x̃(t) =
[
xT

1 (t) xT
2 (t) · · · xT

q (t)
]T

,

x̃o =
[
xT

o xT
o · · · xT

o
]T

,

x̃ f =
[
xT

f xT
f · · · xT

f
]T

.

(13)



Next define the combined state dynamics matrices Ã (of
dimension nq×nq) and B̃ (of dimension nq×mq) as

Ã = diag{A, A, · · · , A} , (14a)
B̃ = diag{B, B, · · · , B} . (14b)

Then combine the observation matrix C with the observations
weights to define C̃ (of dimension nq×nq) as

C̃ =


2w2CTC −w2CTC · · · −w2CTC
−w2CTC 2w2CTC · · · −w2CTC

...
. . . . . .

...
−w2CTC · · · −w2CTC 2w2CTC

 .
(15)

Finally, define the combined state and control cost matrices
R̃ (of dimension mq×mq) and Q̃ (of dimension nq×nq) as

R̃ =


w1 p1R 0 · · · 0

0 w1 p2R · · · 0
...

. . . . . .
...

0 · · · 0 w1 pqR

 , (16a)

Q̃ =


w1 p1Q 0 · · · 0

0 w1 p2Q · · · 0
...

. . . . . .
...

0 · · · 0 w1 pqQ

 . (16b)

Putting all this together, we can rewrite the linear optimal
control problem for MBC, (12) as

min
ui, i∈{1,2,...,q}

∫ t f

0

(
q

∑
i=1

(
ũT (σ)R̃ũ(σ)+ x̃T (σ)

(
Q̃−C̃

)
x̃(σ)

))
subject to

˙̃x(t) = Ãx̃(t)+ B̃ũ(t),

x̃(0) = x̃o, x̃(t f ) = x̃ f ,

i = 1,2, . . . ,q.
(17)

Problem (17) is the well-known continuous-time linear
quadratic cost minimization problem with fixed endpoint.
The solution to this problem is given by (see, e.g. [21])

ũ(t) =−B̃T K(t)x̃(t)− v(t),

K̇(t) = ÃK(t)+K(t)ÃT +K(t)(Q̃−C̃)K(t)− B̃R̃B̃T ,

K(t f )> 0,

v(t) =−B̃T
ΦÃ−B̃B̃T K(t)(0, t)η0,

W (Ã− B̃B̃T K(t), B̃,0, t f )η0 = x̃o−ΦÃ−B̃B̃T K(t)(0, t f )x̃ f .

(18)

where ΦÃ−B̃B̃T K(t)(0, t) is the state transition matrix asso-
ciated with Ã− B̃B̃T K(t) and W (Ã− B̃B̃T K(t), B̃,0, t f ) is
the controllability Gramian associated with the pair (Ã−
B̃B̃T K(t), B̃). Since ũ contains each of the control inputs
defining each of the signaling trajectories, solving (18) yields
the entire set of optimal controls {u∗i }i∈[1,q] to encode the q
messages.

In order for the solution in (18) to be optimal, the matrix(
Q̃−C̃

)
must be positive semidefinite. In the following

proposition, we develop a sufficient condition for which
positive semi-definiteness holds under the assumption that
the probabilities of selection for each of the symbols are
equal.

Proposition 1: Assume that the alphabet of q communica-
tion symbols has a uniform selection probability distribution,
that is pi =

1
q , i = 1,2, . . . ,q. Then, if

w1

q
Q−3w2CTC ≥ 0, (19)

then the matrix Q̃−C̃ is positive semidefinite.
Proof: For the given alphabet of q symbols, define the

matrix ζq as
ζq = Q̃−C̃

Then ζq can also be written as

ζq = Iq⊗
(

w1

q
Q−3w2CTC

)
+1q×q⊗w2CTC (20)

where ⊗ is the Kroenecker (tensor) product, Iq is an identity
matrix of dimension q× q and 1q×q is an q× q matrix in
which every element is 1. This decomposition of ζq yields
the following relationship,

x̃T
ζqx̃ =

q

∑
i=1

xT
i

(
w1

q
Q−3w2CTC

)
xi

+

(
q

∑
i=1

xi

)T

w2CTC

(
q

∑
i=1

xi

) (21)

Since CTC is positive semidefinite, the second sum in (21)
is guaranteed to be non-negative. By selecting w1,w2, and
Q such that w1

q Q−3w2CTC ≥ 0, the first sum is guaranteed
to be non-negative. Under this condition, then, (Q̃−C̃)≥ 0
and the proposition is proved.

In general, one would not expect the communication sym-
bols to be selected with uniform probability. The following
extends Prop. 1 to the non-uniform case.

Proposition 2: Assume that the alphabet of q communi-
cation symbols has a given non-uniform selection probability
distribution pi, i = 1,2, . . . ,q. Define

p∗ = min
i∈{1,2,...,q}

pi.

Then, if
w1 p∗Q−3w2CTC ≥ 0,

then the matrix Q̃−C̃ is positive semidefinite.
Proof: Following the same procedure for Prop. 1 yields

x̃T
ζqx̃ =

q

∑
i=1

xT
i
(
w1 piQ−3w2CTC

)
xi

+

(
q

∑
i=1

xi

)T

w2CTC

(
q

∑
i=1

xi

) (22)



and thus

x̃T
ζqx̃≥

q

∑
i=1

xT
i
(
w1 p∗Q−3w2CTC

)
xi

+

(
q

∑
i=1

xi

)T

w2CTC

(
q

∑
i=1

xi

) (23)

Thus, if w1 p∗Q−3w2CTC≥ 0, then x̃T ζqx̃≥ 0. Thus Q̃−
C̃ ≥ 0.

Note that Prop. 1 is a special case of Prop. 2.

V. A SIMULATION EXAMPLE

To illustrate these results, we created a program in MAT-
LAB that can calculate ũ for a given set of parameters.
The differential equations in (17) and (18) were solved
numerically using MATLAB’s built-in ODE solver ode45
and MATLAB’s boundary value problem solver bvp4c. We
used the program to solve the following system over the
interval [0,1].

ẋ(t) =
(

0 1
−1 −1

)
x(t)+

(
0.5 0.1
0.05 1

)
u(t),

y(t) =
(

1 0.5
)

x(t).

We call the first coordinate of the state x(t) position and
the second coordinate velocity. The cost matrices for the state
and controls were set to

Q =

(
3 0
0 1

)
, R =

(
2 0
0 2

)
.

The initial and final state values were set to

xo =

(
0
0

)
, x f =

(
5
0

)
.

For this example, we sought the controls for three com-
munication symbols with selection probabilities of

p1 = 0.5, p2 = 0.3, p3 = 0.2.

with optimization weights

w1 = 9, w2 = 1.

The optimal trajectories corresponding to the symbols in the
trinary alphabet are shown along with their associated energy
costs in Fig. 1. Note that the optimization automatically
assigned the symbol with the lowest frequency (s3) to a
trajectory with the highest energy cost among the three
determined by the algorithm.

The corresponding signals observed by O when T enacts
the optimal trajectories are shown along with their L2 sep-
aration in Fig. 2. Note here that the minimum pairwise L2
separation occurs between the two least frequently selected
signals y2 and y3 despite the fact that we did not explicitly
consider selection frequency in the formulation of ∆(t f ). The
total optimal cost is w1E[J(t f )]−w2∆(t f ) = 616.20.
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when (18) is applied to the system with given dynamics, cost and parameters
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VI. DISCUSSION

The propositions in Sec. IV give us sufficient conditions
that enable the use of the LQR framework to find minimum
energy, maximum separation trajectories for encoding signals
in motion. This approach, however, does not necessarily
scale well with alphabet size and cannot easily accommodate
symbols whose use is infrequent. Consider, for example,
condition (19) in Prop. 1. Given a fixed Q and C, as the
number of symbols grows, q→ ∞, it must be that the ratio
of the weights also tends to infinity, that is

w1

w2
→ ∞.

From this we infer that the LQR approach is fundamentally
limited in terms of the number of communication symbols it
can support. As the number of symbols grows, the separation
between those signals in the observation space diminishes,
eventually resulting in indistinguishable symbols. One pos-
sible way around this is to replace the optimization over the
signal separation with a constraint on the separation, as in
[16], though intuitively one expects there to be a cost in



energy to support the separation between all the symbols for
very large alphabets.

Under the LQR approach, this result indicates that small
alphabet sizes are preferred. This is an intuitively appealing
notion as it is certainly easier to distinguish two symbols
than 100. This implies that it may be interesting to consider
alphabet size explicitly in the optimization problem. That is,
as the weight of the energy used for the symbols (as captured
by w1) becomes large relative to the cost of separation
(as captured by w2), one may use a smaller alphabet and
communicate messages through longer words. This decision
would increase distinguishability but would likely increase
the cost of sending entire messages. To capture this problem,
define the function L(q,m) to be the length of a message
m encoded in an q-symbol alphabet. Then, if we know
the selection probability of m we may instead change the
objective of our minimization from the one in (12) to

min
q,{ui}i∈{1,2,...,q}∫ t f

0

(
w1Em

[
L(q,m)

q

∑
i=1

ui(σ)T Rui(σ)+ xi(σ)T Qxi(σ)

]

−w2 ∑
j,k: j 6=k

(
x j(σ)− xk(σ))TCTC(x j(σ)− xk(σ)

))
dσ

(24)

where the expectation is now over the probabilities among
messages rather than symbols.

Another issue arises when the selection distribution is non-
uniform. For condition (2) in Prop. 2 to be met, the ratio of
the weights must again go to infinity as p∗→ 0. Thus larger
entropy distributions force a higher weight ratio and thus
a stronger weighting on the energy at the expense of the
separation. To circumvent this, one could initially ignore the
selection frequency weights and redefine (3) to be

E[J(t f )] =
q

∑
i=1

1
q

Ji(t f ) (25)

so that the symbols are assumed to satisfy a uniform dis-
tribution. Since the distribution is not uniform, however, we
would still like to optimize the symbol encoding to minimize
the average amount of energy used in a signal transmission.
This can be done by calculating the actual energy of each
of the trajectories found and assigning the lowest energy
trajectory to the most probable symbol, the next lowest
energy trajectory to the second most probable, and so on.

VII. CONCLUSIONS

In this paper we introduced a version of the motion
based communication problem in which both the cost of
transmitting a symbol through a trajectory and the separation
in the observation space between all the symbols in a given
alphabet are optimized. We connected the problem to the
LQR for the case of a linear system.

While these results are promising, the analysis also showed
that there are concerns with this approach when one consid-
ers alphabets with large cardinality or a wide range in the

selection frequencies of the symbols. While we proposed
a few possible alternatives to overcome these issues, this
remains an interesting and open topic.
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